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Problem 1:

(1)

With R2 illustrated by the Euclidean plane, H is the subset having y-coordinate of 0. This is nothing more
than the x-axis.

(2)

Considering R as a group under addition and R2 as the direct product R × R, we find that H ≤ R2 if and
only if u − v ∈ H for any u, v ∈ H. H is non-empty because every vector of the form (x, 0) ∈ H for some
x ∈ R; i.e., H = R× {0} which is non-empty. We may now take

u = (x1, 0), v = (x2, 0) =⇒ u− v = (x1, 0)− (x2, 0) = (x1 − x2, 0) ∈ H,

where the last equality follows from the definition of the group operation in a direct product. Therefore,

H ≤ R2.

(3)

Cosets (x, y)+H take the form of vertical translates of H, where the distance and direction of the translation
is dictated by y. Put another way, the set may be written as R × {y}, where we always have a full copy of
R in the x-component because we are simply shifting an infinite line along its length.

Problem 2:

(1)

Denote by ι : H → G the identity map 1G on G restricted to the subgroup H. Clearly, the Kernel of a
restriction will always be contained within the Kernel of the unrestricted map, so ι must have trivial Kernel
because it is a restriction of 1G, which always has trivial Kernel. Therefore, ι is injective because a map is
injective if and only if it has trivial Kernel.

(2)

Begin by drawing an equilateral triangle and numbering the vertices with 1, 2, and 3 (with no repetitions).
The dihedral group is defined as follows

D3 =
〈
(123), (12) | (123)3 = (12)2 = (), (123)(12) = (12)(123)2

〉
.

It can be checked easily that these motions are rigid and that they do, indeed, form a group. Observe that
each of these elements is an element of S3 because they are written as permutations of a 3-element set. By
definition, D3 is a subgroup of S3 because it is a subset of S3 that also forms a group under the operation
already existing in S3.
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(3)

Because D3 is a subgroup of S3 part (1) guarantees that there is a map ι : D3 → S3 which is injective.
Furthermore, O(D3) = 6 = O(S3), so injectivity and surjectivity coincide—which is a basic result for
functions between equinumerous sets. Therefore, ι is a bijective map, in other words an isomorphism.

(4)

Here we define the dihedral group in much a similar fashion, just scaled up for the increase in vertices. It is
important to place the condition that the numbering of vertices must be consecutive when passing between
adjacent vertices (where n and 1 are considered consecutive).

Dn =
〈
(12 . . . n), (12) | (12 . . . n)n = (12)2 = (), (12 . . . n)(12) = (12)(12 . . . n)−1

〉
The fact that the generators and their inverses are rigid motions (with the relations), is sufficient to say that
all their products will also be rigid motions. To see this, notice that a rigid motion by definition preserves
distances between all points, so composing rigid motions also preserves distances. Finally observe that each
element of Dn is a permutation and is thereby an element of Sn. Therefore, Dn ⊆ Sn is a subset which forms
a group under the operation of Sn, which is to say Dn ≤ Sn.

Problem 3:

(1)

Let a, b ∈ G be arbitrary elements. We compute

φ(ab) = (ab)n = anbn = φ(a)φ(b),

where the middle equality follows from the fact that G is Abelian. Therefore, φ is a homomorphism.

(2)

The function φ : G→ G need not be a homomorphism when G is not Abelian. For example, take G = GL2(R)
and φ : G → G be defined by a 7→ a2 for all a ∈ G. For φ to be a homomorphism, it must be that
φ(AB) = φ(A)φ(B) for any invertible matrices A and B, so finding any pair of A and B for which equality
does not hold is sufficient to say that φ is not a homomorphism.

A =

[
1 2
3 4

]
B =

[
3 −4
2 −3

]
φ(AB) =

([
1 2
3 4

] [
3 −4
2 −3

])2

φ(A)φ(B) =

[
1 2
3 4

]2 [
3 −4
2 −3

]2
=

[
7 −10
17 −24

]2
=

[
7 10
15 22

] [
1 0
0 1

]
=

[
49 100
289 576

]
=

[
7 10
15 22

]
Clearly φ(AB) 6= φ(A)φ(B) for the chosen A and B, so φ is not a homomorphism. This shows that, in
general, φ need not be a homomorphism when applied to a non-Abelian group.
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(3)

For G = Z×15, φ is a homomorphism by part (1). The definition of φ implies that elements of Ker(φ) are
order 2 elements in addition to 1 (the identity). It is easy to find that

Ker(φ) = {1, 4, 11, 14} ∼= Z2 × Z2

where the isomorphism is due to the fact that the only other isomorphism type for a group of order 4 is Z4—
which is impossible for this subgroup since it has no elements of order 4 (by construction). By Lagrange’s
theorem and the fundamental theorem of homomorphisms, we must have that

G

Ker(φ)
∼= Im(φ) ∼= Z2

because there are only 2 cosets of Ker(φ) within G, and the only group (up to isomorphism) of order 2 is Z2.
It is a fact—which will be encountered later in the course—that all finite Abelian groups may be written

as direct products of cyclic groups. A consequence for this problem is that G has the isomorphism type of
Z8, Z4×Z2, or Z2×Z2×Z2. Given that Ker(φ) was not cyclic and that subgroups of cyclic groups are again
cyclic, we can rule out Z8. And if G were isomorphic to Z2×Z2×Z2, then every element (identity excluded)
would be of order 2. This would imply that O(Ker(φ)) = 8, which we saw was not the case. Therefore, we
must have that G ∼= Z4 × Z2. Rewriting the image produces the statement

Z4 × Z2

Z2 × Z2

∼= Im(φ) ∼= Z2.

The significance of this, which is crucial in more advanced study of algebra, is that Ker(φ) is not a direct
summand of G in this scenario. If you’re curious, you could get into some module theory by looking up split
short exact sequences and maybe even projective modules (for which this would be a non-example).

Problem 4:

(1)

If G is Abelian (written additively), then

Z(G) = G =⇒ Inn(G) ∼=
G

Z(G)
∼= {0},

whereby we may conclude that every inner automorphism is simply the identity map (conjugation by the
identity). Because normal subgroups are those which are preserved under all inner automorphisms, and
because every subgroup is preserved under the identity map, every subgroup must be normal.

(2)

Let {Nα}α∈A be a collection of subgroups normal in G. In saying that a normal subgroup M is a subgroup
preserved under all inner automorphisms, what is meant is that the image of M under inner automorphisms
is contained within M. Define

N :=
⋂
α∈A

Nα

Let θ : G→ G be any inner automorphism of G and θ|N : N → G be the restriction of θ to N. By hypothesis,

Im(θ|N ) ≤ Nα ∀α ∈ A =⇒ Im(θ|N ) ≤ N.

Because the choice of θ was arbitrary, N is preserved under all inner automorphisms, thereby demonstrating
that N is normal.
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(3)

Take h ∈ H to be any element, which then has to satisfy h ∈ G because H ≤ G. Then hKh−1 = K because
K E G. Therefore, K E H since this holds for any element of H.

(4)

Taking advantage of the notation used in problem 6,
〈
a2b
〉
E
〈
a3, a2b

〉
despite the fact that

〈
a2b
〉
5 D6.

Problem 5:

S3 is generated by the permutations (123) and (12), so any automorphism of S3 is determined by the
destinations of these 2 elements. Writing out explicitly the elements of the group

S3 = {(), (12), (13), (23), (123), (132)},

we can easily see that there are 3 elements of order 2 and 2 elements of order 3. Because isomorphisms
preserve the orders of elements, there are 2 possible destinations for (123) and 3 possible for (12), whereby
there are at most 3 · 2 = 6 automorphisms possible. Note also that every inner automorphism is (as the
name suggests) an automorphism. In particular,

Inn(S3) ≤ Aut(S3) =⇒ O(Inn(S3)) ≤ O(Aut(S3)).

Now observe that no transposition commutes with both of the 3-cycles, which implies that Z(S3) is
trivial. Note that the homomorphism G → Inn(G) sending each element x ∈ G to conjugation by x has
Kernel Z(G), so the fundamental theorem of homomorphisms asserts that S3

∼= Inn(S3).
To complete our argument, recall that O(S3) = 3! = 6, so

6 ≤ O(Aut(S3)) ≤ 6 =⇒ O(Aut(S3)) = 6.

Because Inn(S3) ≤ Aut(S3), problem 2.1 guarantees the existence of an injective map ι : Inn(S3) ↪→ Aut(S3).
In fact, ι is also surjective because the orders of its domain and codomain match, so ι is an isomorphism.
Therefore, we obtain

Aut(S3) ∼= Inn(S3) ∼= S3.

Problem 6:

Similarly to problem 2.4, we will define the dihedral group on 6 vertices as

D6 =
〈
a, b | a6 = b2 = e, ab = ba−1

〉
.

Our strategy for establishing the desired isomorphism will rely on finding suitable generators in S3 × Z2

which mimic the function of a and b in D6. Because direct products with non-cyclic groups are non-cyclic,
S3 × Z2 must have at least 2 generators. We claim that

S3 × Z2 = 〈(σ, 1), (τ, 0)〉 for σ = (123) and τ = (12).

If some arbitrary γ ∈ S3 can be written as some product of powers of σ and τ, which is always possible since
they generate S3, then we obtain either (γ, 0) or (γ, 1) from multiplying the proposed generators together in
the same manner—focusing on the 1st component—used to write γ. An easy computation shows that

(σ, 1)3 = (e, 1),

Upon obtaining either (γ, 0) or (γ, 1), we may produce the other by applying (e, 1). Therefore, we have
confirmed our claim.
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The first part of our strategy is complete, so now we must show that the generators of S3 × Z2 act like
a and b in D6. From the associations

(σ, 1) 7→ a and (τ, 0) 7→ b,

we check whether the relations from the definition of D6 still hold true. In particular,

a6 = (σ, 1)6 = (σ6, 6[1]2) = (e, 0) = e, b2 = (τ, 0)2 = (τ2, 2[0]2) = (e, 0) = e,

ab = (σ, 1)(τ, 0) = (στ, 1 + 0) = (τσ−1, 1) = (τ, 0)(σ−1, 1) = ba−1;

the last check made use of the fact that στ = τσ−1 within S3 and that −1 = 1 in Z2. The fact that S3 ×Z2

is generated by 2 elements subject to the same relations as in D6 implies that there can be no more relations
in S3 × Z2 without contradicting the fact that the orders of the groups (12 for both) are equal. With that
said, the associations above induce a bijective homomorphism, so the groups are isomorphic.

The (non-trivial) subgroup diagram for D6 is shown below, with normal subgroups written with an
asterisk (∗). It can be easily counted that there are 14 proper subgroups, 5 of which are normal.

D6

〈
a3, a2b

〉 〈
a3, ab

〉 〈
a3, b

〉
〈a〉∗

〈
a2, b

〉∗ 〈
a2, ab

〉∗
〈
a3
〉∗ 〈

a2
〉∗

〈b〉

〈ab〉

〈
a2b
〉

〈
a3b
〉

〈
a4b
〉

〈
a5b
〉
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